118 research outputs found

    Racial Stereotype Application in 4-to-8-Year-Old White American Children: Emergence and Specificity

    Get PDF
    Young children’s racial stereotyping is poorly understood even though stereotyping can influence individuals’ attitudes and behavior toward others. Here we present two preregistered studies (Total N = 257) examining White American children’s (4–8 years) application of six stereotypes (about being American, smart, wealthy, sporty, honest, and nice) when considering Asian, Black, and White children. We observed clear and consistent evidence for one cultural stereotype across the two studies: participants indicated that Asian and Black children were less American than White children. In a measure of racial attitudes, participants also preferred White children over Black and Asian children. Taken together, this research suggests that, in contrast to findings from previous work, White American children only consistently applied stereotypes about being American. Moreover, this research suggests that children’s cultural stereotypes might diverge from children’s attitudes early in development. These studies raise new questions about the emergence of racial stereotype application early in childhood–including how best to study it

    Primates do not spontaneously use shape properties for object individuation: a competence or a performance problem?

    Get PDF
    Several recent studies have documented that non-human primates can individuate objects according to property and/or kind information in much the same way as human infants do from around one year of age when they begin to acquire language. Some studies suggest, however, that only some properties are used for the individuation of food items: color, but not shape. The present study investigated whether these findings reveal a true competence problem with shape properties in the food domain or whether they merely reveal a performance problem (e.g., lack of attention to shapes). We tested 25 great apes (chimpanzees, bonobos and gorillas) in two food individuation tasks. We manipulated subjects’ experience with differences in color and shape properties of food items. Results indicated (i) that all subjects, regardless of their prior experience, solved the color-based object individuation task and (ii) that only the group with previous experience with different shape properties succeeded in the shape-based individuation task. Great apes can thus be primed to take shape into account for individuating food objects, and this results clearly speaks in favor of a performance (rather than a competence) problem in using shape for object individuation of food items

    Caucasian Infants Scan Own- and Other-Race Faces Differently

    Get PDF
    Young infants are known to prefer own-race faces to other race faces and recognize own-race faces better than other-race faces. However, it is entirely unclear as to whether infants also attend to different parts of own- and other-race faces differently, which may provide an important clue as to how and why the own-race face recognition advantage emerges so early. The present study used eye tracking methodology to investigate whether 6- to 10-month-old Caucasian infants (N = 37) have differential scanning patterns for dynamically displayed own- and other-race faces. We found that even though infants spent a similar amount of time looking at own- and other-race faces, with increased age, infants increasingly looked longer at the eyes of own-race faces and less at the mouths of own-race faces. These findings suggest experience-based tuning of the infant's face processing system to optimally process own-race faces that are different in physiognomy from other-race faces. In addition, the present results, taken together with recent own- and other-race eye tracking findings with infants and adults, provide strong support for an enculturation hypothesis that East Asians and Westerners may be socialized to scan faces differently due to each culture's conventions regarding mutual gaze during interpersonal communication

    What Is a Group? : Young Children’s Perceptions of Different Types of Groups and Group Entitativity

    Get PDF
    To date, developmental research on groups has focused mainly on in-group biases and intergroup relations. However, little is known about children’s general understanding of social groups and their perceptions of different forms of group. In this study, 5- to 6-year-old children were asked to evaluate prototypes of four key types of groups: an intimacy group (friends), a task group (people who are collaborating), a social category (people who look alike), and a loose association (people who coincidently meet at a tram stop). In line with previous work with adults, the vast majority of children perceived the intimacy group, task group, and social category, but not the loose association, to possess entitativity, that is, to be a ‘real group.’ In addition, children evaluated group member properties, social relations, and social obligations differently in each type of group, demonstrating that young children are able to distinguish between different types of in-group relations. The origins of the general group typology used by adults thus appear early in development. These findings contribute to our knowledge about children's intuitive understanding of groups and group members' behavior

    Electrically pumped continuous-wave III–V quantum dot lasers on silicon

    Get PDF
    Reliable, efficient electrically pumped silicon-based lasers would enable full integration of photonic and electronic circuits, but have previously only been realized by wafer bonding. Here, we demonstrate continuous-wave InAs/GaAs quantum dot lasers directly grown on silicon substrates with a low threshold current density of 62.5 A cm–2, a room-temperature output power exceeding 105 mW and operation up to 120 °C. Over 3,100 h of continuous-wave operating data have been collected, giving an extrapolated mean time to failure of over 100,158 h. The realization of high-performance quantum dot lasers on silicon is due to the achievement of a low density of threading dislocations on the order of 105 cm−2 in the III–V epilayers by combining a nucleation layer and dislocation filter layers with in situ thermal annealing. These results are a major advance towards reliable and cost-effective silicon-based photonic–electronic integration

    Blocking representation in the ERA-Interim driven EURO-CORDEX RCMs

    Get PDF
    While Regional Climate Models (RCMs) have been shown to yield improved simulations compared to General Circulation Model (GCM), their representation of large-scale phenomena like atmospheric blocking has been hardly addressed. Here, we evaluate the ability of RCMs to simulate blocking situations present in their reanalysis driving data and analyse the associated impacts on anomalies and biases of European 2-m air temperature (TAS) and precipitation rate (PR). Five RCM runs stem from the EURO-CORDEX ensemble while three RCMs are WRF models with different nudging realizations, all of them driven by ERA-Interim for the period 1981?2010. The detected blocking systems are allocated to three sectors of the Euro-Atlantic region, allowing for a characterization of distinctive blocking-related TAS and PR anomalies. Our results indicate some misrepresentation of atmospheric blocking over the EURO-CORDEX domain, as compared to the driving reanalysis. Most of the RCMs showed fewer blocks than the driving data, while the blocking misdetection was negligible for RCMs strongly conditioned to the driving data. A higher resolution of the RCMs did not improve the representation of atmospheric blocking. However, all RCMs are able to reproduce the basic anomaly structure of TAS and PR connected to blocking. Moreover, the associated anomalies do not change substantially after correcting for the misrepresentation of blocking in RCMs. The overall model bias is mainly determined by pattern biases in the representations of surface parameters during non-blocking situations. Biases in blocking detections tend to have a secondary influence in the overall bias due to compensatory effects of missed blockings and non-blockings. However, they can lead to measurable effects in the presence of a strong blocking underestimation.This work was funded by the Austrian Science Fund (FWF) under the project: Understanding Contrasts in high Mountain hydrology in Asia (UNCOMUN: I 1295-N29). This research was supported by the Faculty of Environmental, Regional and Educational Sciences (URBI), University of Graz, as well as the Federal Ministry of Science, Research and Economy (BMWFW) by funding the OeAD Grant Marietta Blau. This work was partially supported (JMG and SH) by the project MULTI-SDM (CGL2015-66583- R, MINECO/FEDER). DB was supported by the PALEOSTRAT (CGL2015-69699-R) project funded by the Spanish Ministry of Economy and Competitiveness (MINECO)

    Lateral terrestrial water flow contribution to summer precipitation at continental scale – A comparison between Europe and West Africa with WRF‐Hydro‐tag ensembles

    Get PDF
    It is well accepted that summer precipitation can be altered by soil moisture condition. Coupled land surface – atmospheric models have been routinely used to quantify soil moisture – precipitation feedback processes. However, most of the land surface models (LSMs) assume a vertical soil water transport and neglect lateral terrestrial water flow at the surface and in the subsurface, which potentially reduces the realism of the simulated soil moisture – precipitation feedback. In this study, the contribution of lateral terrestrial water flow to summer precipitation is assessed in two different climatic regions, Europe and West Africa, for the period June–September 2008. A version of the coupled atmospheric-hydrological model WRF-Hydro with an option to tag and trace land surface evaporation in the modelled atmosphere, named WRF-Hydro-tag, is employed. An ensemble of 30 simulations with terrestrial routing and 30 simulations without terrestrial routing is generated with random realizations of turbulent energy with the stochastic kinetic energy backscatter scheme, for both Europe and West Africa. The ensemble size allows to extract random noise from continental-scale averaged modelled precipitation. It is found that lateral terrestrial water flow increases the relative contribution of land surface evaporation to precipitation by 3.6% in Europe and 5.6% in West Africa, which enhances a positive soil moisture – precipitation feedback and generates more uncertainty in modelled precipitation, as diagnosed by a slight increase in normalized ensemble spread. This study demonstrates the small but non-negligible contribution of lateral terrestrial water flow to precipitation at continental scale

    Simulating the midlatitude atmospheric circulation: what might we gain from high-resolution modeling of air-sea interactions?

    Get PDF
    Purpose of Review. To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent findings. Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary. Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed

    Blocking and its response to climate change

    Get PDF
    Purpose of review: Atmospheric blocking events represent some of the most high-impact weather patterns in the mid-latitudes, yet they have often been a cause for concern in future climate projections. There has been low confidence in predicted future changes in blocking, despite relatively good agreement between climate models on a decline in blocking. This is due to the lack of a comprehensive theory of blocking and a pervasive underestimation of blocking occurrence by models. This paper reviews the state of knowledge regarding blocking under climate change, with the aim of providing an overview for those working in related fields. Recent Findings: Several avenues have been identified by which blocking can be improved in numerical models, though a fully reliable simulation remains elusive (at least, beyond a few days lead time). Models are therefore starting to provide some useful information on how blocking and its impacts may change in the future, although deeper understanding of the processes at play will be needed to increase confidence in model projections. There are still major uncertainties regarding the processes most important to the onset, maintenance and decay of blocking and advances in our understanding of atmospheric dynamics, for example in the role of diabatic processes, continue to inform the modelling and prediction efforts. Summary: The term ‘blocking’ covers a diverse array of synoptic patterns, and hence a bewildering range of indices has been developed to identify events. Results are hence not considered fully trustworthy until they have been found using several different methods. Examples of such robust results are the underestimation of blocking by models, and an overall decline in future occurrence, albeit with a complex regional and seasonal variation. In contrast, hemispheric trends in blocking over the recent historical period are not supported by different methods, and natural variability will likely dominate regional variations over the next few decades
    • 

    corecore